

Linac Operations

Elliott McCrory Fermilab March 29, 2005

Outline

- The Fermilab Linac
- Beam Operations
 - # beam pulses
 - Beam current
 - Downtime
- Equipment Status
 - 7835 Power Amplifiers
 - Lots of details
 - Klystrons
 - Activation
- Conclusions

The Fermilab Linac

- 201.25 MHz Linac injects into 805 MHz Linac at 116 MeV
 - Transition section is 4 m long
 - 16-cell "buncher" cavity
 - 3-cell "vernier" cavity
- Seven accelerating modules with 4 sections each
 - 3 βλ / 2 between sections

- 2/3 of the way to Booster
- Charge-exchange injection into Booster
 - Today: 10-15 "turns" injection
 - 2.2 µsec per turn
- NTF Patient Treatment has returned

Control Room Comfort Plot

Beam Current [mA]

Particle Losses [arbitrary units]

Position along Linac

Number of Beam Pulses to Booster

Beam Current History: Since 1986

Beam Current: Last Year

Downtime Since June, 2003

- Total: $1002 \, hrs / 30512 \, hrs = 3.28\%$
 - MTBF = 295 minutes
 - Average Duration = 8 minutes
 - RMS Duration = 28 minutes
- Low-Energy half of the Linac: 1.19%
 - Each LRF system ~0.23%
- High-energy half of the Linac: 1.11%
 - Module 1, December 2003: 120 hours (0.39%)
 - Otherwise, each KRF system ~0.10%
- Everything else: 0.98%
 - Pre-accelerator: 0.29%
 - Quad Power Supplies: 0.20%
 - Water: 0.24%
 - Vacuum + Controls + Safety + "MISC" = 0.25%

7835 PA Comments

- Tough time with manufacturer since 2000
 - Burle Industries, Lancaster, PA
 - Several tubes have failed at less than half of the expected life
 - Bad filament material and other problems
 - Bad "getter" materials
 - Retirement of key experts
 - Anode bakeout temperature example
 - We borrowed 3 tubes: From BNL and ANL
 - Have repaid BNL; working on ANL repayment
- Roger Dixon formed a "7835 Task Force" early this year
 - Phase 1 & Phase 2

7835 Task Force

- Task Force Personnel
 - EM, R. Andrews, B. Baller, D. Carlson, P. Czarapata, Jim Morgan, R. Pasquinelli, J. Spalding,
- Phase 1: Completed
 - How can we get enough PA's to last 2 years?
 - Created an order for 12 new tubes,
 - Burle agreed to aggressive delivery schedule
 - In parallel to "regular" deliveries
 - Site visit was very encouraging!
- Phase 2: Underway
 - What if this supply really does dry up?
 - Possibilities?
 - New 402 MHz low-energy Linac?
 - Drive existing 201 MHz tanks with two, lower power tubes?

Tube Life: FNAL & BNL

3 Labs; 3 Slightly Different Linacs

Item	FNAL	LANL	BNL
Beam Duration	30 µsec	1000 µsec	500 µsec
Repetition Rate	15 Hz	120 Hz	7.5 Hz
→Beam Duty Factor	0.06%	12%	0.4%
Peak Power	4.5 MW	2.9 MW	3 - 4.5 MW
Peak/Ave Current	40 mA / 0.024 mA	15 / 1.8 mA	
Sockets	5	4	9*
Hours/year	8000	7000	4000
Tube Lifetime	11,000 Hours		15,000 Hours

- * BNL operations: Two modes
 - Isotope production
 - 35 mA, 116 MeV beam,
 - <u>Drift</u> through tanks 6, 7, 8 and 9
 - Polarized Protons

- LANL
 - Rarely see emission limit
 - Often: Heat-related failures (Ceramics)
 - Currently: all tubes > 20000 hrs

Conclusion: Tube lifetime primarily goes as Peak Power

Comments on Beam Current

- 7835 PA vulnerability is reduced as peak beam current falls
- Have reduced current from 58 mA to 38 mA
 - Motivated by reducing loss per proton in Linac and in Booster
- Further reduction will help
 - But Booster has difficulty re-tuning to different Linac peak current
 - Lower peak current → more Booster "turns"

How Many Tubes ...

- Do we burn up?
 - For Historical lifetimes (11,000 hrs/tube)
 - \rightarrow 3.2 ± 1.1 per year
 - Error bar = $3*(Statistical\ RMS/\sqrt{N})$
 - For 2001-2004 lifetimes (6000 hrs/tube)
 - \rightarrow 5.7 ± 3.4 per year
 - Worst case (3000 hrs/tube)
 - \rightarrow 11.0 ± 13.1 per year
- Have we received? ...

New & Rebuilt Tubes Received/Year

7835 PA Status: In Service & Spares

Sta	Tube S/N	Grad	Fil	Hours	Days	Fraction of median life
1	N49R6	1.01	6423	8845	368	0.56
2	N16R8	1	6659	6304	262	0.58
3	BH4	0.98	6722	2838	118	0.26
4	A2R4	0.96	6633	3801	158	0.35
5	A30R6	0.99	6791	4695	195	0.43
7	N14R7	-0.02	181	153	6	0.01

- BH5
 - 160 hours
- S10R7
 - 516 hours
- BK1
 - 214 hours
- A27R6
 - 11542 hours
- N27R8
 - 76 hours
- AZ4R1
 - 344 hours

Existing New/Rebuild Schedule					
Tube	Delivery	Status	Owner		
A20R8	April	Task 11	FNAL		
New	May		ANL		
P7R9	June 05	Task 11 & 17	FNAL		
New	May		FNAL		
New	June		FNAL		
New	June		FNAL		
New	July		FNAL		
BK3R1	July?	Task 6	FNAL		
A1R9	October?	Task 17	FNAL		

Bulk Order of new tubes, 3/1/05			
Estimated Delivery Date	Owner		
October	FNAL		
October	FNAL		
November	FNAL		
November	FNAL		
December	FNAL		
December	FNAL		
January, 2006	FNAL		
January, 2006	FNAL		
February, 2006	FNAL		
February, 2006	FNAL		
March, 2006	FNAL		
March, 2006	FNAL		

A Typical Klystron, Installed

805 MHz Klystron Issues

- Manufacturer: L3 Communications, NY, NY
 - Tubes built in San Francisco area
- Discovered a serious water issue with the design of this tube in December, 2003.
 - We thought we had 7 spares, but found that 5 were bad
 - Water-to-vacuum braise leak at collector
 - Stagnant water in standby tubes killed them
- L3 has redesigned collector
 - 6 tubes being rebuilt with this modification now.

Klystron Status

Module	Mnf	S/N	Hours	Days	Years	Internal Vacuum µA
0	Varian	L122	94569	3940	10.7	1.12
V	Varian	L113	98667	4111	11.2	0.00
1	L3	0005R1	9340	389	1	0.01
2	L3	0004	97546	4064	11.1	0.00
3	L3	0006	81918	3413	9.3	0.05
4	L3	0016	12278	511	1.3	0.09
5	L3	0007	100599	4191	11.4	0.02
6	L3	0013R1	38210	1592	4.3	0.17
7	L3	0015	82052	3418	9.3	0.65
D	Varian	A21	80967	3373	9.2	0.02

Klystron Spares & Delivery

- Varian: K107
 - 0 hours
- Varian: L026Z
 - 0 hours
- L3: 0003
 - 2194 hours
- L3: 0011
 - 37163 hours
- L3: 0002
 - 0 hours

Tube	Delivery	Comments
0012	March 2005	
0009	April 2005	Water leak developed in final test
0014	April 2005	
0008R1	May 2005	
0012	March 2005	

Activation of Components

- Linac not designed for minimum losses
- What beam rate can we provide?
 - 15 Hz for ~hours
 - 5 Hz "forever", now.
- Hands-on maintenance is possible
 - But we rarely have to!
- Smaller loss per proton at lower Linac peak current
 - For both Linac and Booster
 - Tried 58 mA; now use 38 mA.
 - May try even lower in the future.

Activation in the Linac Tunnel (at 1 Foot), March 22, 2005

Conclusions

- The Fermilab Linac continues to be the most reliable and relied upon machine at Fermilab
 - Known problems account for most of downtime
 - A lot of these are in the 35+ year old systems
 - Random failures in 805 MHz segment
- 7835 PA issues are understood well
 - Not particularly different in severity now than it has ever been
 - Lower peak beam current might be beneficial
- We will continue to monitor tunnel activation

Done!

Backup Slides ...

Downtime Since 1/1/2005

Time	Duration	System	Description of Down Time, Duration > 20 minutes
Jan 06, 2005 04:00:00	22 min.	PACC	IHVOLT wandering.
Jan 18, 2005 16:14:00	1.00 hrs.	NTF	Linac Access for L:C32DEG cable investigation
Jan 19, 2005 10:21:00	1.06 hrs.	PACC	I- regulation/trippage
Jan 22, 2005 21:31:00	47 min.	LRF	KRF1 tripped on a switch balance indication
Jan 30, 2005 16:45:00	1.50 hrs.	PACC	I- dome motor generator brush failure.
Jan 31, 2005 14:20:00	27 min.	LRF	KRF7 temperature regulation module replacement
Feb 03, 2005 13:45:00	47 min.	LRF	KRF1 phase regulation problems.
Feb 05, 2005 17:55:00	2.00 hrs.	LPS	QPS222 tripped.
Feb 15, 2005 17:00:00	29 min.	LRF	LRF5 pulse off. PA nitrogen was low due to looses hose.
Feb 19, 2005 11:25:00	1.78 hrs.	LRF	KRF6 down CS ind. PFN crowbar, IGNT_I_ST
Feb 19, 2005 23:29:00	2.05 hrs.	LWATR	KRF6 PFN water leak.
Feb 22, 2005 08:50:00	41 min.	LPS	L:QPS130 and L:QPS229 noisy.
Feb 22, 2005 18:45:00	3.83 hrs.	LRF	QPS130 erraticaaly out of tolerance.
Feb 22, 2005 22:36:00	43 min.	LPS	QPS130 replacement underway. A rad trip at Linac TK #1 when PS was turned off
Feb 23, 2005 07:21:00	22 min.	LPS	L:QPS113 & L:QPS114 regulation problems
Feb 24, 2005 05:00:00	1.45 hrs.	LPS	QPS229 & QPS130 regulation problems.
Mar 02, 2005 03:56:00	3.73 hrs.	LRF	LRF3 tripped on a IPA2 failure.
Mar 02, 2005 06:23:00	3.25 hrs.	PACC	L:HARCI output failure and recovery.
Mar 07, 2005 15:28:00	2.13 hrs.	LMISC	KRF6 solenoid failure.
Mar 15, 2005 04:23:00	37 min.	LPS	L:SPECUR in and out of tolerance.
Mar 18, 2005 22:20:00	2.58 hrs.	LRF	KRF5 trip
Mar 23, 2005 09:06:00	1.40 hrs.	LRF	KRF7 arc over caused water leak onto equipment in the charging supply.
Mar 28, 2005 10:36:00	44 min.	LRF	KRf2, KRF3, & KRF5 water hose repair.
Mar 27, 2005 06:59:00	33 min.	LRF	KRF6 water leak repairs.
Total Down Time:	52.31 hrs	2.69%	This is the total for all downtime. This table only shows DT>20 minutes

March 30, 2005

Peak Power Required for 100 mA Operation [MW]